Efficient Enzymatic Hydrolysis of Bamboo by Pretreatment with Steam Explosion and Alkaline Peroxide

نویسندگان

  • Yang Xing
  • Hailong Yu
  • Liwei Zhu
  • Jianxin Jiang
چکیده

A combination of steam explosion (SE) and alkaline peroxide (AP) used to pretreat bamboo was investigated. Steam explosion at 224 °C for 4 min was applied to bamboo, and the pretreated bamboo was delignified by alkaline peroxide. Enzymatic hydrolysis was compared in the pretreated samples. Steam pretreatment led to remarkable hemicellulose solubilization (63.2%). Lignin solubilization (93.1%) was achieved by alkaline peroxide treatment of steam-pretreated bamboo at 80 °C for 1 h in 0.88% (v/v) H2O2, whereas only 33.4% of lignin was solubilized when using raw bamboo. Pretreatment methods resulted in a low degree of polymerization and increased hydrolysis of cellulose. A maximum glucose yield of 90.5% was achieved with a combined steam explosion and alkaline peroxide pretreatment. The surface structure of treated bamboo and the adsorption of enzyme on the substrate were characterized by X-ray photoelectron spectroscopy. Delignification decreased enzyme adsorption and increased enzymatic conversion. SEM analyses indicated that SE-AP pretreatment disrupted lignin networks and exposed crystalline cellulose in bamboo more effectively than SE or AP pretreatment alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatmen...

متن کامل

Comparison between Wet Oxidation and Steam Explosion as Pretreatment Methods for Enzymatic Hydrolysis of Sugarcane Bagasse

Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised o...

متن کامل

Combination of Low-pressure Steam Explosion and Alkaline Peroxide Pretreatment for Separation of Hemicellulose

Low-pressure steam explosion (LPSE) combined with alkaline peroxide (AP) pretreatment was first employed to separate hemicellulose from Lespedeza stalks. The monosaccharide composition and molecular weight distribution of the obtained hemicellulose fractions were characterized in this study. The results show that the hemicellulose extracted from Lespedeza stalks consisted of xylose, glucose, ga...

متن کامل

Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stabi...

متن کامل

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013